Automated Attack Discovery in Data Plane Systems

Qiao Kang, Jiarong Xing and Ang Chen
Rice University

1. Problem

- **Background:** Data plane systems are emerging
 - Enabled by programmable switches
 - Switch pipeline is programmable using P4
 - Fast reaction to dynamic network events

- **Problem:** Data plane systems can be attacked
 - Example: load_balancer.p4

- **New attacks:** “Flipping” the expected behavior
 - Expected behavior: Evenly splitting traffic
 - Malicious traffic pattern: TCP.sport = 1, 3, 5, 7, ...
 - “Flipped” behavior: All packets go to link 0

- **A general class of attacks**
 - Applies to many data plane systems
 - Different systems are vulnerable to different patterns

2. Approach

- **Our goal:** Given a data plane system, discover all malicious traffic patterns and synthesize defenses in an automated manner.

- **Our system:** 3-step automated attack discovery
 - Step ①: Establish expected behaviors
 - Step ②: Flip the expected behaviors
 - Step ③: Synthesize runtime monitors

- **Input P4 program**
 - If (TCP.sport % 1)
 - forward(0)
 - Else
 - forward(1)

- **“Patched” P4 program**
 - If (TCP.sport % 1)
 - Monitor1()
 - forward(0)
 - Else
 - Monitor2()
 - forward(1)

3. Challenges

- **Challenge #1:** Quantifying expected behaviors
 - Probabilistic symbolic execution
 - Enabled by model counting
 - Study per-path probabilities

- **Challenge #2:** Identifying Equivalence Classes (ECs)
 - Path# can be very large
 - Group “equivalent” paths to ECs.

- **Challenge #3:** Handling stateful programs
 - Exploring N packets: state explosion
 - Use directed symbolic execution

4. Ongoing work

- **Initial results**
 - Attack load_balancer.p4
 - t < 15s: Expected behavior
 - t = 15s: Attack starts
 - Attack detected by monitors

- **Open questions**
 1. How to group paths to ECs?
 - Too fined-grained: too many ECs
 - Too coarse-grained: lose useful information
 2. How to deal with switch resource constraints?
 - P4 switches have limited memory and ALUs
 - Compress monitors using sketches

This work is partially supported by the National Science Foundation through grant CNS-1801884.