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Abstract
At growing internet companies like ByteDance, Wide

Area Network (WAN) bandwidth sharing across diverse
services with varying SLO requirements is a fundamental
challenge. Conventional host-based enforcement systems,
where agents identify and throttle traffic at the server end,
face practical challenges such as “blind spot” traffic, kernel-
dependent operational complexity, and significant server re-
source overhead. To address these issues, we present Net-
P4ct, an in-network bandwidth enforcement system using P4
programmable switches. Net-P4ct improves both bandwidth
guarantees and fair sharing by shifting dynamic QoS control
into the switch data plane. Specifically, it achieves broader
traffic coverage by combining host-side traffic tagging with a
P4-switch pipeline, where service classification and QoS class
assignment are performed. Based on observed traffic metrics,
a centralized control plane determines real-time policy up-
dates according to the max-min fair bandwidth allocation.
We demonstrate the system’s benefits including improved
bandwidth utilization, reduced operational complexity, and
lower per-byte processing cost. Net-P4ct has been deployed
in ByteDance’s production WAN for nearly a year, and we
hope to share our experience with the community.

1 Introduction

Driven by diversified modern-day applications including
cloud services, online live-streaming, and on-demand video
services, internet companies are seeing drastically increasing
volumes of network traffic and a diverse range of business
types [14,16]. Due to the long deployment cycles and high pro-
visioning costs associated with WAN (Wide Area Network)
expansion, network operators strive to improve bandwidth uti-
lization and resource efficiency, in order to meet the service-
level objectives (SLOs) for various applications [23, 36, 39].
To cater to the business growth, the capacity of ByteDance’s
self-built WAN has increased from O(10) Tbps to O(100)

†Co-corresponding authors.

Figure 1: Existing WAN model

Tbps in the past few years. Today, ByteDance’s backbone
network connects tens of self-built data centers (DCs) across
regions, utilizing multiple third-party cloud service providers
(CSPs) around the world [13].

This hybrid inter-connect scenario imposes additional com-
plexity and unique challenges for the network design and
operations. The most common approach for bandwidth alloca-
tion in a large-scale backbone network is to deploy a massive
number of host agents, which are co-located with applica-
tions/services at the server end [9, 25, 32]. Host agents are
capable of monitoring host traffic, modifying packet headers,
and performing traffic throttling1, etc. Despite the ample in-
dustry deployment and experience, host-agent based solutions
have some fundamental limitations, making it less than ideal
in our complex WAN settings. i) It lacks coverage for traf-
fic from certain “blind spots,” e.g., if the traffic traverses the
backbone network without going through the host, it cannot
be captured by the system (see the blue dashed line in Fig-
ure 1). The influx of unregulated traffic from cloud providers
and the Internet, directly destined for our remote data centers,
places considerable strain on our private WAN’s limited band-
width. ii) It requires tremendous efforts to manage millions of
hosts in mega-scale infrastructures, in addition to tens of ver-
sions of operating systems and kernels; iii) The total resource
consumption for a large scale of host agents is significant.

1We use throttling and rate limiting interchangeably in this work.



In this work, we present Net-P4ct (pronounced as “net-
pact”), a flexible and versatile bandwidth allocation and
fair resource sharing system for WAN traffic using P4 pro-
grammable switches [10, 22, 29]. Net-P4ct is fundamentally
different from host-based approaches, as it shifts the band-
width enforcement and quality-of-service (QoS) control into
the switch data plane. Our proposed system enhances traffic
penetration by deploying P4 programmable switches (cluster)
in conjunction to backbone Provider Edge (PE) switches in all
regions, which covers all critical paths of WAN traffic. Acting
as in-network “toll gates”, P4 switches are responsible for
assigning the corresponding QoS class to every packet travers-
ing through the backbone network. We define the bandwidth
request model, and work with other business teams to stan-
dardize the bandwidth sharing agreement. Based on real-time
traffic metrics and resource availability from Traffic Engi-
neering (TE) system and the inventory system, a centralized
Net-P4ct controller cluster computes policy updates accord-
ing to the max-min fair bandwidth allocation. The updates are
pushed to P4 switches for real-time bandwidth enforcement.

There have been extensive studies on bandwidth sharing
and management [21, 30, 31, 34]. However, most of the work
and systems focus on sharing networks among tenants in
the cloud computing environment. The WAN environment is
inherently more complex due to differences in provisioning
strategies, cost sensitivity, and service heterogeneity.

We briefly summarize our contributions as follows.

• We propose a generic and flexible in-network bandwidth
management framework for broader coverage of WAN traf-
fic compared to host-based solutions in hybrid scenarios.

• We implement an efficient bandwidth enforcement sys-
tem that integrates a centralized controller with P4 pro-
grammable switches. The system is work-conserving, guar-
antees per-service minimum bandwidth, and provides max-
min fairness across all services.

• We propose two enforcement policy alternatives, i.e., meter-
based policy and statistics-based policy, and provide exten-
sive numerical evaluations in real testbed.

• We share our deployment insights and operational experi-
ence in the real-world large-scale production network.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces background information and discusses our
motivation. Section 3 presents an overview of Net-P4ct. Sec-
tion 4 explains how effective bandwidth enforcement and fair
bandwidth sharing are achieved with our proposed solution.
Section 5 describes the implementation and interaction of all
system components. In Section 6, we present the setup of our
testbed and show extensive numerical results. Section 7 shows
our production deployment insights. In Section 8, we review
the related work. Finally, Section 9 concludes the paper.

2 Background and Motivation

In this section, we first introduce ByteDance’s core network
infrastructure, where a wide spectrum of services share the
WAN bandwidth. We then highlight the unique characteristics
of the workload and the corresponding challenges for effec-
tive bandwidth management. Finally, we summarize the key
motivations behind our design.

2.1 ByteDance’s cross-region services

Our backbone network provides connectivity for hundreds of
applications with diverse business needs, including external
clients, customer-facing applications and internal support ser-
vices, such as Compute, Storage and so on. Each individual
business scenario may have its distinct SLOs, e.g., bandwidth
and latency. Similar to other related work [9, 25], we broadly
categorize the network traffic into several QoS classes based
on the business priorities and traffic patterns.

For ease of illustration, we categorize the traffic QoS
classes into high priority class and low priority class. Fig-
ure 2 shows the major service traffic distribution in each
priority class. i) We observed that each QoS class consists
of diverse service types. A few infrastructure services (e.g.,
compute and storage) and main business applications account
for majority of network traffic in each priority class. ii) Most
business-related traffic belongs to high priority class. Even
though some of them do not have large bandwidth require-
ment, their SLOs need to be guaranteed. iii) A large fraction
of low-priority traffic belongs to distributed file system, which
exhibits bursty traffic patterns [38]. Thus, it is an important
and challenging task to enable effective bandwidth sharing
with fairness for a large number of diverse services with dis-
tinct SLOs in our production system.

One unique scenario in our backbone network is the mix-
ture of traffic originated from heterogeneous types of sources,
e.g., self-managed DCs, CSPs and internet. Based on our
service scenario, backbone traffic is categorized into the fol-
lowing two types.
Host-to-host (H2H): traffic originates from services running
in internal servers (dotted line in Figure 1).
External-to-host (X2H): traffic originates from cloud ser-
vices or the Internet to internal hosts (dash line in Figure 1).
For instance, to improve workload flexibility, load balancers
are deployed with cloud workloads. These load balancers for-
ward traffic through our WAN to backend servers in remote
data centers. This approach not only enables flexible work-
load placement, but also leverages our WAN infrastructure to
deliver a more reliable and optimized service experience.

Figure 2(c) shows the average and peak traffic ratios of
different traffic types in one of our backbone regions. Clearly,
X2H traffic is an important scenario in our network, which
accounts for 33% of the peak ingress WAN traffic.
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Figure 3: Linux kernel version distribution

2.2 Host-based Solutions Facing Challenges
Similarly to the Host Enforcer in [25], we have deployed a
host-based daemon on every server named NetAgent. It uti-
lizes eBPF (Extended Berkeley Packet Filter) in the Linux ker-
nel to implement a set of functionalities, including host-traffic
monitoring, packet header modification, and traffic throttling.
However, such a traffic throttling design has encountered cer-
tain challenges in practice.

• Traffic from “blind spots”. Due to the significant pene-
tration of X2H traffic in our backbone network, part of the
network traffic cannot be captured by host agents, causing
“blind spots” in the bandwidth management system.

• Maintenance costs of agents. Millions of hosts in the
mega-scale infrastructure, combined with mixed deploy-
ment of kernel versions, can incur tremendous operating
and maintenance costs. Figure 3 shows more than 50 differ-
ent kernel versions in the production. We have encountered
incidents due to kernel version difference in the past.

• Resource overhead. Host agents are consuming resources
(e.g., CPU cores) on the running hosts, especially for throt-
tling. Based on our operational statistics, a million host
agents will consume approximately O(20k) CPU cores.
This resource consumption will be billed to network team,
incurring significant additional operational cost.

In practice, we have seen a few incidents caused by the
above-mentioned reasons. Here, we show two examples to
motivate our new design in this work.
Incident 1 - Kernel Bugs: In some rate-limiting cases, we
observed that some packets are mistakenly marked with a
very large timestamp value. FQ (Fair Queue) is a classless

packet scheduler that is designed for flow pacing [1]. Ac-
cording to the Earliest Departure Time (EDT) algorithm used
by NetAgent, these packets cannot be transmitted from FQ
before their assigned timestamps [8]. The kernel bug caused
inconsistent time bases used by the protocol stack and FQ: the
protocol stack is using CLOCK_TAI (International Atomic
Time) while FQ is using CLOCK_MONOTONIC. The packet
sending process of some versions of the kernel, like IPVS
(IP Virtual Server), will use the protocol stack’s time base,
resulting in a very large timestamp value. The bug was later
fixed in new patches in kernel version 5.10 [5, 6].
Incident 2 - Fair Queue Saturation: In this incident, we
observed that part of host’s network interface cards (NICs)
were not pingable after a 100Mbps rate-limiting intention.
The root cause boiled down to the saturation of FQ in Linux
Kernel (usually has size of ≈ 10k packets). Suppose the ser-
vice is originally sending traffic at a 1Gbps rate and each
packet’s size is 1500 bytes, after NetAgent limit the traffic
rate of this service, the backlog size will increase at the rate of
75k packets/s. As a result, the FQ will be quickly fully occu-
pied. It is saturated with packets from the rate-limited service,
whose timestamps are minutes later than the current time.
Thus, these packets need to remain in the FQ for several min-
utes. Since FQ is a shared resource, this saturation prevents
other traffic from being enqueued. This case demonstrates
that improper configuration of FQ poses a risk of impairing
unthrottled traffic. This issue was resolved in a later fix with
a horizon configuration [7].

2.3 Need For Flexible In-network Solutions

As we mentioned above, the host-agent based solutions may
not handle “blind-spot” traffic very well. One fundamental
reason is that host agents are not located on the critical paths
of all types of WAN traffic. For instance, X2H traffic will enter
WAN from point-of-presence (PoP) without passing any hosts.
In contrast, critical network devices (e.g., PE switches) are
deployed directly in WAN, making them natural candidates
for this purpose. However, conventional network devices can
only provide limited flexibility, as switch fabrics are highly
optimized for routing and traffic forwarding purposes. In ad-



Figure 4: The overview of Net-P4ct

dition, frequently changing device configurations is not ideal
for maintaining network stability.

The recent emergence of P4 programmable offers new pos-
sibilities to customize the data plane pipeline and enable
more in-network functionalities. Given the advantages of P4
switches, our aim is to develop a flexible and cost-effective
bandwidth sharing framework for WAN using in-network de-
vices. Next, we will provide a high-level overview of our
proposed solution.

3 Overview

In this section, we present Net-P4ct, a WAN-wide bandwidth
management and enforcement system that utilizes the versatil-
ity and manageability of P4 programmable switches. Net-P4ct
is designed to enable flexible QoS control and fair bandwidth
sharing across all applications in geographically distributed
data centers.

As shown in Figure 4, at each WAN ingress point2, we
deploy dedicated clusters consisting of P4 switches. All traf-
fic, including that from hosts, cloud services or Internet, is
processed by the attached P4 switches before being redirected
to its destination over the WAN. These clusters form an entire
programmable data plane that manages all outgoing traffic
before it enters the backbone.

To enable per-service identification and traffic control:

• For H2H traffic, a lightweight agent (i.e., NetAgent) runs
on each host and tags live packets with a service identifier.
This allows P4 switches to recognize the traffic source at
line rate.

• For X2H traffic, P4 switches infer the service identity di-
rectly from packet-level characteristics.

A central controller receives user-submitted bandwidth re-
quests, allocates bandwidth resources accordingly, and com-
putes enforcement policies based on real-time traffic metrics.
These policies are then distributed to the P4 switches for
in-network enforcement.

2WAN ingress points includes backbone PE switches at self-managed
DCs and PE switches connected to CSPs and internet.

Figure 5: IPv6 destination options header for host-to-host
communication

Unlike traditional systems based on rate limiting, Net-
P4ct leverages P4 programmability to dynamically adjust
QoS class according to the measured service rate and then
maps the QoS class to the corresponding DSCP value at P4
switches. Afterwards, these DSCP values are assigned to pri-
ority classes, and packets are handled by the strict priority
queuing mechanisms on WAN switches. This enables dif-
ferentiated QoS class of traffic and fair bandwidth sharing
among services.

The system is also designed with scalability and reliability
in mind. Further implementation details, including resilience
mechanisms, are described in Appendix A.

4 Bandwidth Guarantees with Fairness

In this section, we present the design of the Net-P4ct band-
width management framework, which provides guaranteed
bandwidth with fairness across services. We begin by intro-
ducing the abstraction of the service bandwidth request model
and the procedure by which service teams submit bandwidth
requests. These requests are then evaluated by the network
team and either accepted or rejected based on current resource
availability. We then describe our approach to bandwidth shar-
ing among multiple services, followed by a discussion of
the enforcement mechanisms that ensure proper bandwidth
allocation and traffic prioritization.

4.1 Bandwidth Request Model Abstraction

We define a job as the minimal unit of bandwidth request,
represented as a tuple: {JobID, Service, Pattern, RegionA,
RegionZ, GuaranteedBandwidth, Weight }.

Each job corresponds to a collection of flows from a source
region RegionA to a destination region RegionZ. The Service
field identifies the business service to which the job belongs.
A single business service typically consists of multiple jobs,
each with distinct flow patterns or regions.

The Pattern field describes the traffic characteristics of the
job. Based on traffic category, we classify patterns into two
categories.
Host-to-host pattern. In our containerized infrastructure,
multiple services share the same computing resources. To
distinguish traffic at the job level, packets originating from
hosts are required to carry a unique job identifier. This identi-
fier can be recognized by P4 switches and used to associate
the traffic with the job. Currently, IPv6 accounts for the ma-



jority of our internal traffic. For IPv6 packets, we embed the
service job ID in the Destination Options Header (DOH), as
shown in Figure 5. For IPv4 packets, the ID is carried in the
IP Options field.
External-to-host pattern. In this communication model,
source IP or the destination IP prefix corresponds to a reg-
istered job. For instance, public IP address of a cloud load
balancer is used in a service job. We identify such traffic using
a 3-tuple pattern: {srcIPPrefix, dstIPPrefix, proto}.

The GuaranteedBandwidth field specifies the requested
bandwidth for flows from RegionA to RegionZ. This value
represents a strict guarantee, and the network team ensures
the bandwidth requirement is met. The Weight field indicates
the priority level of the job. A higher weight indicates a higher
priority in scheduling and resource allocation.

Based on our operational experience, service teams often
overestimate their bandwidth needs, leading to underutiliza-
tion and inefficient resource allocation. To address this, we
require service teams to enter a bandwidth agreement with the
network team. Under this agreement, if the usage is far less
than the requested, the service team is responsible for a fixed
portion of the cost associated with their requested bandwidth.

Meanwhile, the network team collaborates with service
teams on a monthly basis to review and adjust bandwidth
requests based on historical traffic trends, ensuring that allo-
cations remain aligned with real-world demand.

4.2 Bandwidth Request Grant

After a bandwidth request is submitted, the approval system
determines whether the request can be granted based on cur-
rent resource availability. This decision depends on the capac-
ity of underlying network. We first introduce the link capacity
model, then describe how external systems (i.e., Traffic En-
gineering (TE) system and inventory system) coordinate to
approve and allocate the guaranteed bandwidth.

4.2.1 Link Capacity Model

To ensure fault tolerance, ByteDance’s backbone network is
designed with built-in redundancy. A portion of the network’s
total link capacity is intentionally reserved as headroom to
absorb failures and support disaster recovery scenarios.

Each link’s capacity is divided into two classes:

• Reserved capacity: Used for high-priority traffic and guar-
anteed bandwidth allocations.

• Non-reserved capacity: Available for best-effort traffic and
non-critical services.

For example, consider a scenario where four 100G links
connect Region A and Region Z, providing a total capacity of
400 Gbps. To maintain resilience, 60% of the total capacity
(240 Gbps) is reserved. The remaining 160 Gbps is classified

15GbpsA 10Gbps

1Gbps

B C

D

Job 1(weight=1)

Job 2 (weight=3) Job 3 (weigth=1)

Figure 6: Bandwidth fair sharing example

as non-reserved capacity. When a service team requests guar-
anteed bandwidth, it is always allocated from the reserved
capacity pool.

4.2.2 Guaranteed Bandwidth Allocation

Bandwidth requests are evaluated through the coordination of
the Traffic Engineering (TE) system and the inventory system.

The inventory system maintains an up-to-date view of the
network topology by collecting information via standard pro-
tocols such as SNMP, BGP-LS, and BMP [12, 17, 27]. When
a new job request is submitted, the TE system computes a
set of candidate paths that satisfy the connectivity constraint.
These candidate paths are then validated by the inventory
system, which checks whether each link along the path has
sufficient reserved capacity to fulfill the requested guaran-
teed bandwidth. If a feasible path is found, the bandwidth is
reserved, and the request is approved. When resources are
limited, the system prioritizes critical services to ensure that
available capacity is allocated efficiently.

4.3 Bandwidth Sharing Policies

In Net-P4ct, service jobs share available bandwidth in a work-
conserving manner: one job can use spare bandwidth beyond
its minimum guarantee when the network is underutilized.

We define the concept of fair share bandwidth, allocated
from the non-reserved capacity (the portion of link capac-
ity not reserved for guaranteed traffic). While guaranteed
bandwidth specifies the minimum service request, fair share
bandwidth reflects the additional bandwidth a job may receive,
based on its priority weight.

Net-P4ct aims to maximize overall network throughput
using a weighted max-min fairness model [11,26,28]. We cal-
culate fair shares using the water-filling algorithm, as outlined
in Algorithm 1 in. Figure 6 presents an example of bandwidth
allocation among three service jobs with weights 1, 3, and
1. The non-reserved capacities of the three links are 15Gbps,
10Gbps, and 1Gbps, respectively. We denote the minimum fair
share unit as b. Bandwidth is allocated iteratively as follows.

• Round 1: Allocate initial shares as B1 = b,B2 = 3b,B3 = b.
increase b uniformly until link lD−>B becomes saturated.
This link is only used by Job 3, so its fair share is finalized
as B3 = 1Gbps.



Algorithm 1 Weighted max-min fairness allocation

Input:
S : set of all services
L : set of all links
Wi: weight of service i ∈ S
Cl : non-reserved capacity of link l ∈ L
P(i, l) = 1{service i traverses link l} is an indicator function
Output:
Bi: fair share bandwidth of service i,∀i ∈ S
Init:
Sactive←− S , Lactive←− L , Lsat←− /0, b←− max_int.
Start:
while Lactive ̸= /0 do

Step 1: calculate b as follows.

max
b

b (1a)

s.t. ∑
i∈Sactive

bWiP(i, l)≤Cl , ∀l ∈ Lactive (1b)

Step 2: find saturated links and services on these links.
Lsat←− Lsat∪{l| equality is met in (1b)}
Ŝ ←− {i|P(i, l) = 1,∀l ∈ Lsat}
output Bi←− b ·Wi,∀i ∈ Ŝ

Step 3: update corresponding variables.
Cl ←−Cl−∑i∈Ŝ b ·Wi,∀l ∈ Lactive
Lactive←− Lactive \Lsat
Sactive←− Sactive \ Ŝ

end while

• Round 2: Continue increasing b for Job 1 and Job 2. Stop
when link lB−>C becomes saturated. This link is shared by
Job 2, resulting in B2 = 3∗3 = 9Gbps.

• Round 3: Finally, continue increasing b for Job 1 until link
lA−>B becomes saturated. This gives B1 = 6Gbps.

Thus, the final fair share bandwidths are: 6Gbps, 9Gbps
and 1Gbps for Job 1, Job 2 and Job 3, respectively.

4.4 Enforcement Policies

Our operational experience with the legacy system re-
vealed that traditional rate limiting mechanisms often intro-
duce throughput fluctuations. This instability occurs due to
threshold-based enforcement: rate limiting is activated when
link utilization exceeds an upper threshold and is released
only after it drops below a lower threshold. This behavior
frequently results in repetitive oscillations in throughput, re-
ducing overall bandwidth utilization efficiency.

Figure 7 illustrates this phenomenon in our production
network. Rate limiting was triggered at time t1 when link
utilization reached 80% of capacity. It remained active until
t2, when throughput fell below 65%. A similar cycle occurred
from t3 to t4.

Figure 7: Throughput oscillations in legacy system

To address these limitations, Net-P4ct replaces rate limit-
ing with DSCP remarking performed by P4 switches. Down-
stream WAN switches enforce QoS policies based on DSCP
values using strict priority queuing. Packets are classified into
three queues: B (high priority), C (medium priority), and D
(low priority). The QoS class for each packet is determined by
one of two enforcement policies: a meter-based policy (MBP)
or a statistics-based policy (SBP).

4.4.1 Meter-based Policy

As shown in Figure 8, MBP applies a Two-Rate Three-Color
Marker (trTCM) for each service job to classify packets into
three priority levels: green, yellow, or red [18]. For simplicity,
this mechanism can be conceptually modeled as a cascade of
two token buckets. Every packet sequentially passes through
both buckets. Each trTCM meter is configured with four pa-
rameters: Committed Information Rate (CIR), Committed
Burst Size (CBS), Peak Information Rate (PIR), and Peak
Burst Size (PBS). For clarity, we focus on the rate-based
behavior and omit burst size considerations:

• If the traffic rate is within the CIR, packets are marked
green.

• If the traffic rate exceeds the CIR but remains within the
PIR, packets are marked yellow.

• If the traffic rate exceeds PIR, packets are marked red.

In our design, CIR is set to the job’s guaranteed bandwidth,
while PIR is set to the sum of guaranteed bandwidth and
fair share bandwidth. Packets are then remarked with DSCP
values and mapped to switch queues as follows.

• Green packets→ High-priority QoS class
• Yellow packets→Medium-priority QoS class
• Red packets→ Low-priority QoS class

This policy enforces strict priority while enabling efficient
bandwidth utilization across services.

4.4.2 Statistics-based Policy

While the MBP is intuitive, its per-packet operation can cause
packet reordering at the destination. To address this, we in-
troduce the Statistics-based Policy (SBP), which operates at



Figure 8: The working mechanism of meter-based policy

the flow group level. It works as follows: Traffic flows are
mapped into a set of predefined hash buckets based on their
hash values, with each bucket representing a flow group. A
feedback mechanism monitors the real-time throughput of
each bucket and updates its DSCP value periodically. As
shown in Figure 9, SBP consists of two components: manual
coloring and burst mitigation.
Manual Coloring. For each job, we allocate N hash buckets,
assigning flows to buckets using a 5-tuple hash (based on
source IP, destination IP, source port, destination port, and
protocol). Each bucket tracks counters of incoming packets.
Let t denote the previous time window, and rt

bi
represent the

observed rate for bucket i during window t.
At time t+1, we select a subset of buckets such that the sum

of their rates meets or just exceeds the guaranteed bandwidth,
i.e., find

min∑rt
bi

s.t. ∑rt
bi
≥ GuaranteedBandwidth.

This process can be viewed as a variant of the knapsack
problem [35]. Packets belonging to the selected buckets are
marked green and assigned the corresponding high-priority
DSCP values.

We then repeat this process on the remaining buckets to
satisfy the fair share bandwidth, i.e.,

min∑rt
bi

s.t. ∑rt
bi
≥ FairShareBandwidth,

and mark packets from these buckets as yellow.
Any buckets not selected in either step are marked red. This

prioritization is updated periodically based on statistics from
the previous cycle.
Burst Mitigation. While manual coloring effectively elimi-
nates packet reordering and improves traffic stability, it cannot
respond quickly to short-term traffic bursts. To address this,
we deploy two additional meters-one for green packets and
one for yellow packets, to enable fine-grained burst detection
and prevent potential overload.

For green packets, the meter is configured with both CIR
and PIR set to the guaranteed bandwidth. Thus, traffic within
the guaranteed rate remains green, while any excess is down-
graded to red. For yellow packets, the meter is similarly con-
figured, with both CIR and PIR set to the fair share bandwidth.
Traffic within this threshold remains yellow, and any excess
is marked red.

Figure 9: The workflow of statistics-based policy

Figure 10: The architecture of Net-P4ct

This layered enforcement provides a safety net for burst
handling, complementing the manual coloring with real-time
rate awareness.

5 System Implementation

Net-P4ct is deployed in production networks, with each WAN
ingress point equipped with a dedicated cluster of Tofino-
based P4 switches [4]. As shown in Figure 10, the system
architecture consists of three primary components: the host
agent, the P4 pipeline, and the central controller. In the pri-
mary workflow, a service request triggers the controller to cal-
culate the bandwidth allocation. This result is sent to the P4-
agent, which then programs the policy into the P4 pipelines.
Concurrently, the collector monitors system health and data
plane statistics (e.g., flow counters), writing this telemetry
data to a time-series database. For H2H scenarios, a host agent
handles requests by configuring eBPF programs directly on
the host.

5.1 Host Agent
On each host, Net-P4ct deploys two components: a user-space
agent (NetAgent) and a kernel-space eBPF program that op-
erates as part of the host’s data plane.

NetAgent periodically queries a centralized ser-
vice to obtain metadata including the mappings of
{host, jobID,cgroupID}, enabling the association of con-
tainers with their corresponding service jobs. Once retrieved,
the agent updates a BPF map with entries containing jobID
and cgroupID. The eBPF program consults this map to
identify traffic originating from containers and tags outgoing



packets with the appropriate job ID before they leave the
host.

This per-packet service tagging allows downstream P4
switches to classify traffic by job and apply appropriate QoS
policies in the WAN.

5.2 P4 Pipeline

Net-P4ct’s P4 pipeline is designed to perform high-speed
classification and enforcement of bandwidth policies for all
service traffic. It supports both IPv4 and IPv6, including pack-
ets with optional headers.

Upon entering the pipeline, each packet is classified at the
service job level. For host-originated traffic, this is done by
extracting the jobID embedded in the packet by the host agent.
For traffic arriving from external sources, such as public cloud
or Internet ingress, classification is performed using a 3-tuple
match on source IP prefix, destination IP prefix, and protocol.

For the MBP, each packet traverses a trTCM meter. Meter
parameters (e.g., CIR and PIR) and DSCP values are provi-
sioned by the P4-agent in the control plane.

For the SBP, the pipeline uses a 5-tuple hash to assign flows
to hash buckets. Each bucket maintains hardware counters to
track traffic volume in bytes. These statistics are periodically
collected by a control-plane collector within the P4 switch.
The data is finally sent to a central time-series database.

Net-P4ct implements a two-stage coloring pipeline for SBP:
1) Manual Coloring. The central controller assigns a static
color to all packets within a bucket, based on the collected
traffic statistics. 2) Meter-based Coloring. After manual col-
oring, packets undergo additional rate-based coloring using
trTCM. Separate meters are applied to green and yellow pack-
ets to enforce bandwidth ceilings. This ensures that any traffic
exceeding guaranteed or fair share limits is downgraded to
red for precise burst control.

This approach allows Net-P4ct to provide both stable as-
signment (via manual coloring) and dynamic enforcement (via
trTCM) within the same pipeline. Based on the final color,
the P4 switch updates the DSCP value in the IP header. For
IPv4 traffic, the header checksum is recalculated to maintain
protocol correctness.

5.3 Central Controller

The central controller orchestrates the entire Net-P4ct system.
It is responsible for:

• Managing the service job lifecycle, including registration,
deregistration, and bandwidth adjustments

• Calculating fair share bandwidth allocations based on user
input and data from time-series database

• Generating updated enforcement policies and distributing
them to P4-agent

Implemented as a cloud-native, stateless application, the
central controller stores all persistent data in a distributed
database. Historical traffic metrics, such as per-bucket coun-
ters, are maintained in a time-series database. The controller
leverages this data to compute updated enforcement policies
using the max-min fairness algorithm. Policy updates are then
pushed to the P4-agent running on the P4 switches.

6 Evaluation

This section shows extensive evaluation results of our pro-
posed design alternatives in our testbed.

6.1 Setup
Testbed Settings: We implemented the Net-P4ct P4 program
and deployed it on a commodity Wedge-100BF-65X switch
with a Barefoot Tofino 6.4 Tbps ASIC, supporting up to
64× 100 Gbps ports. The Tofino switch has 4 pipes, and
each pipe is composed of an ingress pipeline and an egress
pipeline. In order to assign more available resources (e.g.,
stages and memory) for P4 program, the code was imple-
mented in folded mode, that is, each ingress pipeline at the
first pipe is concatenated to other three pipes in series and
looped back to the egress pipeline of the first pipe. The switch
supports 16 external accesses in this mode. For each service
job, we allocate 32 hash buckets for fine-grained traffic parti-
tioning, with each bucket maintaining a 64-bit counter to track
byte statistics for rate estimation. The collector reports the
data every 10s. The central controller calculates enforcement
policy updates every 60s.

Our testbed includes 8 servers (Intel(R) Xeon(R) CPU
Platinum 8260 @ 2.40GHz, 96 Cores, 1536 GB RAM), each
equipped with 2×25 Gbps Ethernet interfaces. NetAgent is
installed on each server. The Net-P4ct controller is deployed
as 3 distributed replicas, which communicate with the P4
switches via gRPC.
Experiment Scenario: The testbed resembles a simple WAN
with multiple Points of Presence (PoPs) that connect to PE
switches. The focus of the experiment is on inter-PoP traf-
fic management and bandwidth enforcement. In addition to
the network inter-connectivity, each PoP is equipped with
servers and P4 devices that handle essential tasks such as data
processing and traffic marking, ensuring effective bandwidth
management and resource sharing.

Table 1: Bandwidth Agreement for Services

Job (Service) weight minBW fairShareBW

1 1 1 0.5
2 3 2 1.5
3 4 3 2

We deploy 3 jobs on separate PoPs (i.e., hosts) to simulate
the traffic generation of 3 different services. Each job is as-
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Figure 11: Baseline: no bandwidth enforcement.
Table 2: Time-varying Traffic Patterns

Phase Time Interval
(min)

Rate (Gbps)
Job 1 Job 2 Job 3 Total

Phase 1 0–10 5 1 2 8
Phase 2 10–20 5 3 2 10
Phase 3 20–30 5 3 3 11

signed a network path, with all paths converging on a shared
100 Gbps link. To emulate congestion, we configure access
control rules (ACLs) on the network switches to drop packets
once aggregate throughput exceeds 10 Gbps. The reserved
capacity of the link is set to 6 Gbps and the non-reserved
capacity is 4 Gbps.

The bandwidth requests for these services are shown in Ta-
ble 1, with fair bandwidth values obtained from Algorithm 1.
We use Job 1 to simulate services that are granted less weight
and guaranteed bandwidth compared to Job 2 and 3.

Table 2 shows the time-varying traffic patterns of services.
As we can see, starting from phase 2, the total transmission
rate of all jobs would reach 10 Gbps, triggering congestion
and packet drops.

6.2 Numerical Results

Baseline: We first show the performance of a no-action policy
as a baseline. As shown in Figure 11(a), without bandwidth
enforcement, round trip times (RTTs) of all jobs increase in
phase 2 due to network congestion. Figure 11(b) shows that
congestion also increases normalized retransmission rates
(defined as the ratio between retransmission packet counts
and its rate) for all jobs after phase 2. The retransmission rate
in phase 3 is further increased due to more sever congestion.
In Figure 11(c), as the total transmission rate increases in
phase 2, each job roughly gets throughput as listed in Table 2.
As Job 3 keeps increasing its sending rate in phase 3, it obtains
more bandwidth at the cost of throughput losses for Job 1 and
Job 2.
Meter-based Policy: Our first observation is that MBP en-
sures the guaranteed bandwidths for all jobs at all time. In
phase 1, all jobs reach the throughput of their transmission
rates, as no congestion is present in the network. However,
as congestion occurs in phase 2, Job 1’s bandwidth share is

immediately suppressed, leading to increasing RTT and re-
transmission in Figure 12(a) and 12(b). In contrast, Job 2 and
3 consistently maintain negligible RTTs and zero retransmis-
sion counts. Figure 12(c) shows that throughputs of Job 2
and 3 always remain above their guaranteed min_BW shares
(2 Gbps and 3 Gbps, respectively). In phase 3, since Job 2
and 3 do not fully use their fair-shared amount of bandwidth
(3.5 Gbps and 5 Gbps, respectively), Job 1 is able to obtain
approximately 2.6 Gbps bandwidth, which is higher than its
fair-shared amount of 1.5 Gbps.
Statistics-based Policy: Figure 13 shows the performance
of SBP. Similar to MBP, the demands of all jobs are satisfied,
resulting in their average RTT and retransmission rate remain-
ing at 0 in phase 1. However, in Figure 13(c), Job 1 obtains a
higher throughput (4.1 Gbps) than the case under MBP (3.5
Gbps) in phase 2, while the rates of Job 2 and 3 stay the same.
The similar trend is observed in phase 3. The results reflect
that SBP significantly improves Job 1’ throughput during con-
gestion periods. Consequently, by comparing Figures 12(b)
and 13(b), we observed that SBP has better performance in
the retransmission count compared to MBP.

Remark. Note that, as we discussed in Section 4.4, MBP
operates at the individual packet level, while SBP assigns
same priority for all packets in the same flow. As a result,
even though only a fraction of packets are assigned a low
priority, MBP tends to affect more flows than SBP, causing
higher retransmission rate.

RTT & TCP Efficiency Comparison: We also analyze the
cumulative distribution of RTT and retransmission rates for
Job 1 under both MBP and SBP. Figure 14 shows that MBP
presents a typical log-normal RTT distribution in phase 2 and
phase 3. This is because MBP operates at packet level, caus-
ing each flow in Job 1 to experience packet drops with equal
probability. In contrast, MBP displays a dispersed latency
pattern characterized by a dichotomy: approximately 30%
of flows maintain near-zero RTTs, whereas the remaining
flows experience significantly higher RTTs. Figure 15 further
illustrates that SBP outperforms MBP in terms of the retrans-
mission rate. SBP also follows a log-normal distribution, with
retry rates consistently higher than those with MBP.
Total Throughputs: Figure 16 compares the overall through-
put with MBP and SBP. During congestion phases, SBP con-
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Figure 12: Meter-based policy
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Figure 13: Statistics-based policy
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Figure 14: RTT CDF comparison
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Figure 15: Retransmission CDF comparison

sistently delivers significantly higher throughput than MBP.
This improvement is because that a subset of Job 1’s flows
are not degraded (remarked as red) during congestion with
SBP. In contrast, MBP tends to affect more flows of Job 1 as
MBP is flow-agnostic. This results in a lower data transfer
efficiency. These findings indicate that SBP is more effective
at utilizing available bandwidth under congested conditions.
Flow Completion Time: Figure 17 shows the flow comple-
tion time (FCT) comparison between MBP and SBP with
50GB data transfer. The FCT of MBP is higher than that of
SBP when congestion occurs (phase 2 and phase 3). This is
because Job 1 under SBP can fully utilize its requested and
fair share bandwidth without retransmission.

Host Agent Throttling CPU Overhead: We also evaluate
the CPU usage of NetAgent in two modes: traffic tagging only
(in Net-P4ct) and host-based throttling (in our legacy system).
The total traffic rate is fixed at 25 Gbps. Figure 18 shows that
as the number of flows increases from 2,000 to 16,000, the
CPU usage for both modes increases. While Net-P4ct remains
under 3% CPU usage even at 16,000 flows, the host-based
throttling grows sharply, reaching nearly 15% CPU usage
at the same point. This demonstrates Net-P4ct avoids the
additional processing overhead incurred by in-host throttling,
resulting in improved cost efficiency.
Mircoburst Impact: We evaluate SBP’s effectiveness in mit-
igating the impact of microbursts. The bandwidth assignment
for each job is consistent with that of "Phase 1" in Table 2.
In this experiment, we introduce three 5-second traffic bursts
starting at 30s, 60s, and 90s. The SBP policy allocation re-
mains static during the test. As shown in Figure 19, the initial
burst from Job 1 does not affect Jobs 2 and 3. This is because
SBP’s burst mitigation mechanism demotes it to a low pri-
ority by remarking its DSCP value. When Job 2 initiates its
burst, we observe a drop in Job 1’s throughput and a spike in
its retransmissions. This occurs because Job 1 was consum-
ing bandwidth beyond its fair share. We see a similar pattern
when Job 3 bursts.

We also evaluated the resource consumption, as described
in Appendix B.

7 Real World Production Deployment

Over the past year, we have deployed Net-P4ct across 4 data
centers and 24 WAN PoPs. The initial adopters were business
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Figure 19: Microburst scenario with SBP

services with external communication requirements, includ-
ing cross-region traffic and cloud workloads. Figure 20(a)
illustrates the growth of jobs and deployment over time. More
than 500 service jobs have been registered by service teams.
As the system has been proven stable in production, we are
accelerating the rollout to the rest of the data centers and
PoPs.

To support large-scale configuration updates, we run 9 dis-
tributed controller replicas using 36 CPU cores. Figure 20(b)
presents the configuration time of each iteration over a typical
time series. The 99th percentile (p99) latency is 7.37 seconds
from policy generation to enforcement.

Net-P4ct has significantly improved traffic control and
bandwidth predictability. Prior to the deployment of Net-P4ct,
X2H traffic from certain services could exceed requested band-
width by over 5× due to the lack of effective enforcement,
as shown in the upper plot of Figure 20(c). In the current
production environment, most services now operate close to
their requested bandwidth. Even for aggressive bandwidth
users, their peak usage does not exceed 150%, as shown in
the lower plot of Figure 20(c). This improvement results from
in-network enforcement and monthly bandwidth reviews be-
tween network and service teams, enabling more accurate
capacity planning and efficient bandwidth allocation.

Interestingly, deploying Net-P4ct also improves our traf-
fic visibility. Previously, we relied on coarse-grained SNMP
counters to monitor throughput on a per-port basis. In contrast,
Net-P4ct enables us to perform fine-grained traffic analysis
at the flow level (e.g., by IP address). It has substantially
deepened our understanding of the overall network traffic
distribution.
Deployment Experiences and Lessons Learned
Migrating to Net-P4ct. To ensure stability during the migra-
tion, we adopt a phased rollout strategy. In the initial canary

phase, we choose to migrate low-priority services with small
traffic volumes on a per-subnet basis. The process for migrat-
ing a single subnet is as follows: 1) Identify the target subnet
for migration; 2) Program the P4 switches for each region
via the control plane with the necessary flow rules to enable
packet forwarding for the target subnet; 3) After the data plane
is ready, we redirect the service traffic to the P4 switches by
having them announce BGP routes for the service subnet. We
then gradually expand the migration scope to other services.
Cluster Scaling-out. Our system employs a cluster of P4
switches to provide both high availability and load balanc-
ing. Incoming traffic is distributed across P4 switches within
the cluster via ECMP. When a service’s traffic is below a
predefined threshold (empirically set to 1 Gbps), we encap-
sulate the packets into a VXLAN tunnel and steer them to
a single, designated P4 switch. The enforcement policy is
applied on this single switch. When a service’s traffic exceeds
the threshold, we distribute the policy enforcement across all
switches to leverage the aggregate processing power of the
cluster. For example, an 8 Gbps policy for a service would
be implemented by enforcing a 2 Gbps on each of the four
P4 switches in the cluster. This adaptive strategy allows us to
balance the trade-off between simplified state management
and the horizontal scalability of a distributed architecture.
Failure detection and fallback is critical. Since P4 plays
an important role in Net-P4ct, to distinguish P4 failures from
the physical network failures, we deploy active probes that
monitor both P4 and non-P4 paths simultaneously. This allows
us to quickly identify the source of failures. In the event of
a P4 switch port failure or an entire P4 switch failure, the
BGP routes are automatically withdrawn. The traffic is then
seamlessly redirected to the other active links/devices in the
cluster. In the highly unlikely event of a catastrophic P4 cluster
failure, we have implemented a fail-safe mechanism to ensure
basic network connectivity. This mechanism allows us to
bypass the entire P4 cluster by falling back to the underlay
physical network.
Bandwidth request reviews are essential. In a fast-paced
environment where new services are launched frequently, of-
tentimes their initial traffic patterns are unclear to network
operators. It is crucial for the network team to collaborate
closely with service teams to continuously review and adjust
bandwidth requests, especially during early deployment. This
process helps the network team track the actual demand of
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Figure 20: Production deployment of Net-P4ct

services and improve bandwidth utilization.
Deploying Net-P4ct outside ByteDance. The core concept
of Net-P4ct is a general in-network bandwidth sharing mech-
anism, which we believe has broad applicability beyond our
internal corporate environment. A critical factor is that Net-
P4ct has no specific requirements for Tofino switches. Instead,
it leverages common programmable ASIC capabilities such
as flexible packet parsing/LPM lookup. Given Intel’s 2024
announcement to discontinue its Tofino product line, we are
actively exploring the feasibility of porting Net-P4ct to other
prominent networking silicon, such as Trident5 [2, 3].

8 Related Work

There has been an extensive body of work on WAN bandwidth
management, both in academia and in industry. On the high
level, we can broadly categorize previous studies into two
directions, i.e., throttling-based QoS management and SDN-
TE based approaches.

The most related body of work is in the line of throttling-
based QoS management. BwE [25] is a hierarchical band-
width allocation system for WAN distributed computing. The
service traffic is aggregated by “enforcers” at different levels,
and a global enforcer is responsible for computing a network-
wide bandwidth allocation decision, which will be passed
down again to each level’s enforcer. Ultimately, the throttling
is done at the host side. BwE incorporates bandwidth func-
tions to establish fair sharing among services. In contrast,
Net-P4ct utilizes in-network enforcement to provide better
coverage.

Network Entitlement [9] is the contract-based network shar-
ing solution for Meta’s backbone network. By remarking non-
conforming traffic of misbehaving services to a lower priority,
it protects conforming traffic and realizes service isolation.
For conforming traffic, the network guarantees SLOs such as
availability, clarifying the responsibilities of service teams and
network teams, and facilitating accountability. However, [9]
does not account for fairness among services, which is in
direct contrast to Net-P4ct.

Algorithms for distributed limiters are studied in [33] to
recreate the flow behavior as if it is under a single central-
ized rate limiter. The flow proportional share (FPS) limiter
proposed in [33] is appropriate for deployment in TCP-based

Web-services environments, while Net-P4ct’s rate limiting is
protocol agnostic, i.e., applicable to TCP and UDP.

On the other line of work, recent industrial experience in-
cluding SWAN [19, 24], B4 [20, 37], and EBB [15] provide
valuable insights for WAN traffic management in the produc-
tion scale. However, the main focuses of above systems are on
developing Software Defined Network (SDN) controllers for
traffic engineering purposes. Meanwhile, Net-P4ct manages
the service traffic entering the WAN, and promotes fair re-
source sharing. Net-P4ct also work together with our in-house
TE controller for path allocation and inventory approval.

9 Conclusion

In this paper, we present Net-P4ct, a highly customizable and
versatile system for allocating bandwidth and fairly sharing
resources for WAN traffic. By leveraging P4 programmable
switches, Net-P4ct overcomes the limitations of traditional
host-based enforcement systems and improves bandwidth
utilization, ensuring that traffic from different services with
varying SLO requirements is efficiently managed. Our sys-
tem not only improves the usage of available bandwidth, but
also enhances the overall performance of WAN. Compared
to kernel-dependent host-side solutions, reduced operational
complexity simplifies network management and maintenance,
saving both time and resources. Additionally, the lower per-
byte processing cost makes it a cost-effective solution for
large-scale WAN deployments. With its successful deploy-
ment in ByteDance’s production WAN for nearly a year, Net-
P4ct has proven its performance and reliability in a high-speed
real-world network environment. It provides a reliable and
effective approach for dynamic QoS control, enabling bet-
ter service classification and more fair bandwidth allocation.
As internet companies continue to grow and face increas-
ing demands on their WAN infrastructure, Net-P4ct offers a
promising model for future network management, setting a
new standard for in-network bandwidth enforcement.
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A Redundancy and Scalability

Net-P4ct is designed with high availability and failover mech-
anisms to ensure reliable operation in production.
P4 Switch Resilience: Each data center deploys a cluster
of P4 switches, all directly connected to the WAN uplinks.
In the event of hardware or port-level failures, BGP conver-
gence automatically redirects traffic through healthy paths.
For more severe failures (such as a firmware bug or full cluster
outage), the system supports a failover mode in which traf-
fic is bypassed from the P4 switches entirely and forwarded
through the physical switches using predefined routes. This
ensures that traffic continues to flow even when in-network
enforcement is temporarily disabled.
Control Plane Resilience: Developed as a cloud-native appli-
cation, the central controller runs in a stateless manner. Multi-
ple controller replicas are deployed across data centers, and
any instance can serve as the active coordinator. All persistent
data (metadata, service request, traffic metrics) is stored in
ByteDance’s distributed infrastructure-grade database, which
offers automatic replication and failover.

If communication between the controller and a P4-agent
is interrupted, the affected switches continue operating using
the last configurations. Once the connection is restored, up-
dated policies are seamlessly applied. This design ensures that
fairness enforcement degrades gracefully rather than disrupt-
ing service, and policy accuracy is restored without manual
intervention.
Scalability: The central controller is stateless by design, al-
lowing horizontal scaling through the deployment of addi-
tional replicas as needed. On the data plane side, Net-P4ct
supports scalability by allowing multiple P4 switch clusters to
be deployed across data centers and WAN ingress points. This
architecture allows the system to accommodate increasing
service demands.

B Switch Resource Consumption

Switch Resource Consumption: Table summarizes the ad-
ditional switch resource usage introduced by Net-P4ct’s new
functionalities for a single pipe (Net-P4ct-related pipeline).
Here, Baseline denotes the logical pipe in the basic switch

Table 3: Switch Resource Usage of a Single Service Pipe

Resource Usage (%)
Baseline Baseline + Net-P4ct Increased Usage

GateWay 7.8 10.9 3.1
Hash Bit 6.6 9.8 3.2

Meter ALU 4.2 8.3 4.1
TCAM 7.3 7.3 0
SRAM 13.1 24.6 11.5

Map RAM 4.5 17.2 12.7
Stash 6.3 9.9 3.6

Stats ALU 12.5 12.5 0
Action Data Bus Bytes 7.8 10.2 3.4
Exact Match Input Xvar 4.5 7.9 3.4

Logical Table ID 18.8 22.9 4.1

that provides forwarding, port monitoring, and ACL. Because
Net-P4ct reuses the baseline’s classify table in another pipe,
the incremental TCAM usage is 0. The results show that
most resource overheads are below 5%, demonstrating mild
overhead in our implementation. With all available pipeline
resources, Net-P4ct can support at least 128K service jobs
per switch. The main constraint is Map RAM, which is used
for 64-bit counters in SBP. This can be further optimized by
shortening feedback cycles or compressing to 32 bits, thereby
reducing SRAM usage by half.
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